skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "DeSalvio, Nicolas D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Microearthquakes can be dynamically triggered in southern California by remote earthquakes. However, directly connecting dynamic triggering mechanisms with observational data remains challenging. One proposed failure mechanism suggests that both the amplitude and duration of cyclic fatigue caused by the passing seismic wave contribute to triggering occurrence. Here, we measure dynamic strains recorded by borehole strainmeters in the Anza section of the San Jacinto fault zone from 710 earthquakes that occurred over 300 km away between 2008 and 2017 to systematically investigate the role of elevated and sustained strain in controlling dynamic triggering. We design a suite of tests to evaluate whether specific amplitude thresholds and durations of strain can predict dynamic triggering cases. We further test whether the peak dynamic strain (PDS) can predict triggering occurrence in combination with the strain amplitude and duration. Based on these tests, there is no strain amplitude–duration threshold that can distinguish triggering occurrence in Anza. Dynamic triggering is more likely to occur if a remote earthquake causes a PDS above 100 nanostrain, though many cases were triggered at smaller PDSs. The lack of clear correlation between triggering and characteristics of the dynamic strain field suggests that the tested features of the incoming waves do not determine triggering occurrence and local fault conditions and slip processes are more important in controlling dynamic triggering in Anza. 
    more » « less
    Free, publicly-accessible full text available February 11, 2026
  2. Abstract Dynamic earthquake triggering is commonly identified through the temporal correlation between increased seismicity rates and global earthquakes that are possible triggering events. However, correlation does not imply causation. False positives may occur when unrelated seismicity rate changes coincidently occur at around the time of candidate triggers. We investigate the expected false positive rate in Southern California with globalM ≥ 6 earthquakes as candidate triggers. We compute the false positive rate by applying the statistical tests used by DeSalvio and Fan (2023),https://doi.org/10.1029/2023jb026487to synthetic earthquake catalogs with no real dynamic triggering. We find a false positive rate of ∼3.5%–8.5% when realistic earthquake clustering is present, consistent with the 95% confidence typically used in seismology. However, when this false positive rate is applied to the tens of thousands of spatial‐temporal windows in Southern California tested in DeSalvio and Fan (2023),https://doi.org/10.1029/2023jb026487, thousands of false positives are expected. The expected false positive occurrence is large enough to explain the observed apparent triggering following 70% of large global earthquakes (DeSalvio & Fan, 2023,https://doi.org/10.1029/2023jb026487), without requiring any true dynamic triggering. Aside from the known triggering from the nearby El Mayor‐Cucapah, Mexico, earthquake, the spatial and temporal characteristics of the reported triggering are indistinguishable from random false positives. This implies that best practice for dynamic triggering studies that depend on temporal correlation is to estimate the false positive rate and investigate whether the observed apparent triggering is distinguishable from the correlations that may occur by chance. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  3. Abstract Earthquakes can be dynamically triggered by the passing waves of other distant events. The frequent occurrence of dynamic triggering offers tangible hope in revealing earthquake nucleation processes. However, the physical mechanisms behind earthquake dynamic triggering have remained unclear, and contributions of competing hypotheses are challenging to isolate with individual case studies. To gain a systematic understanding of the spatiotemporal patterns of dynamic triggering, we investigate the phenomenon in southern California from 2008 to 2017. We use the Quake Template Matching catalog and an approach that does not assume an earthquake occurrence distribution. We develop a new set of statistics to examine the significance of seismicity‐rate changes as well as moment‐release changes. Our results show that up to 70% of 1,388 globalM ≥ 6 events may have triggered earthquakes in southern California. The triggered seismicity often occurred several hours after the passing seismic waves. The Salton Sea Geothermal Field, San Jacinto fault, and Coso Geothermal Field are particularly prone to triggering. Although adjacent fault segments can be triggered by the same earthquakes, the majority of triggered earthquakes seem to be uncorrelated, suggesting that the process is primarily governed by local conditions. Further, the occurrence of dynamic triggering does not seem to correlate with ground motion (e.g., peak ground velocity) at the triggered sites. These observations indicate that nonlinear processes may have primarily regulated the dynamic triggering cases. 
    more » « less